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..
Approach

..

Can topic modelling be used to infer video structure for
video event detection?

• Issues with existing topic modelling algorithms:

◦ Latent Dirichlet Allocation (LDA) can result in
class irrelevant topics

◦ Supervised LDA (sLDA) is intractable for large-
scale datasets

◦ LDA and sLDA have similar performance

We propose a new variational inference method,
Fast Supervised Latent Dirichlet Allocation
(fsLDA), able to:

• Identifymeaningful discriminative components in
videos, which we callmicro-events

• Retain class relevant information so that the
topics are relevant to the performed actions
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Fast Supervised LDA

Fast Supervised LDA (fsLDA) reduces the computational compexity of sLDA and increases
the influence of class relevant information on the infered topics to improve classifcation per-
formance.
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Figure 1: (Left) The graphical model representation of fsLDA. (Right) The graphical model representation of the variational distribution
used to approximate the posterior of fsLDA

Given a document and the corresponding class label yd, the posterior distribution of the latent
variables p(θ, z | w, y, α, β, η) is intractable. Therefore, we use variational methods to approxi-
mate this posterior.

Variational distribution: q(θ, z1:N | γ, ϕ1:N ) = q(θ | γ)
N∏
n=1

q(zn | ϕn)

Kullback-Leibler (KL) divergence: KL(q ∥ p) = −(Eq[log p(θ, z, w, y, α, β, η)]− Eq[log q(θ, z)])+

log p(w, y, α, β, η) = −L(γ, ϕ | α, β, η) + log p(w, y, α, β, η)

Evidence Lower Bound (ELBO): L(γ, ϕ | α, β, η) = Eq[log p(θ | α)] + Eq[log p(z | θ)]+

Eq[log p(w | β, z)] +H(q) + Eq[log p(y | z, η)]︸ ︷︷ ︸
Problematic term

Problematic term: Eq [log p(y | z, η)] = ηTy Eq [z̄]− Eq

log
C∑
ŷ=1

exp(ηTŷ z̄)


1. We use Jensen's inequality for the problematic term

−Eq

log
C∑
ŷ=1

exp(ηTŷ z̄)

 ≥ − log
C∑
ŷ=1

Eq

[
exp(ηTŷ z̄)

]
2. We approximate using Second-order Taylor expansion

− log
C∑
ŷ=1

Eq

[
exp(ηTŷ z̄)

]
≈ − log

C∑
ŷ=1

exp(ηTŷ Eq[z̄])

(
1 +

1

2
ηTŷ Vq[z̄]ηŷ

)
3. The variance term Vq[z̄] =

1
N 2

(∑N
n=1

∑
m ̸=n ϕnϕ

T
m +

∑N
n=1 diag(ϕn)

)
is very small in the case

of Mutlimedia due to N , the word counts, which exceeds 10,000 and thus it can be omitted

4. The derivative of L w.r.t. ϕn, having added the Lagrange Multipliers λn, is

dLϕn

dϕn
=

(
Ψ(γ)− Ψ(

K∑
j=1

γj)

)
+ log βn − logϕn − 1 + λn +

1

N

(
ηy −

C∑
ŷ=1

sŷηŷ︸ ︷︷ ︸
s=softmax
(Eq[z̄],η)

)

5. s changes very slowly w.r.t ϕn, thus we derive a closed form update rule for ϕn

Closed form update rules

ϕn ∝ βn exp
(
Ψ(γ) +

C
max(η)

(
ηy −

C∑
ŷ=1

sŷηŷ

))
βij ∝

∑
d,n

ϕdni1(j = wn)

γ = α +

N∑
n=1

ϕn η = argmax
η

( D∑
d=1

ηTyd Eq[z̄d]−

D∑
d=1

log
C∑
ŷ=1

exp(ηTŷ Eq[z̄d])
)
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Experimental Results

We conducted qualitative and quantitative experiments in UCF-11 and UCF-101 datasets using
state-of-the-art local features such as Improved Dense Trajectories (IDT) and Deep Convolu-
tional Neural Networks (DCNNS).

Qualitative analysis of a topic

tennis_swingtennis_swing

soccer_jugglingsoccer_jugglinggolf_swinggolf_swing

basketballbasketballtrampoline_jumpingtrampoline_jumping

trampoline_jumpingtrampoline_jumping

trampoline_jumpingtrampoline_jumping

trampoline_jumpingtrampoline_jumping

All trajectories Trajectories from this topic The same topic in other classes

Figure 2: Qualitative analysis shows that topics are semantic and transcend classes

fsLDA outperforms both sLDA and LDA in
UCF-11 and UCF-101 in a variety of motion
and visual content descriptors with respect to
classification accuracy (see Table).

We observe that this superiority is accentuated
when reducing the feature dimensions using ei-
ther mRMR feature selection or training with a
smaller number of topics.

0 50 100 150 200 250 300
Feature size

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

BoW mRMR

LDA@600 mRMR

LDA
fsLDA@600 mRMR

fsLDA

sLDA

Figure 3: Comparison of fsLDA, sLDA, LDA and BOW using few
dimensions to represent videos (UCF-11 idt-hog)

Dataset Feature fsLDA sLDA LDA

UCF-11 idt-hog 0.9299 0.9018 0.9118

UCF-11 idt-hof 0.8530 0.8592 0.8374

UCF-11 idt-mbhx 0.8449 0.8323 0.8336

UCF-11 idt-mbhy 0.8580 0.8455 0.8480

UCF-11 idt-traj 0.7904 0.7748 0.7754

UCF-11 dsift 0.9280 0.9143 0.9280

UCF-101 VGG 2014 conv5_2 0.6237 Intractable 0.5603

UCF-101 idt-hof 0.5607 Intractable 0.5272

Table 1: Comparison of fsLDA, sLDA and LDA with respect to classification accuracy

We observe that fsLDA is comparably fast with LDA while being 30-200 times faster than sLDA.
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Figure 4: Speed comparison between fsLDA, sLDA and LDA on artificial data
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Conclusions

We developed a new variational inference method, fsLDA, which

• is able to infer topics in a supervised manner

• in contrast to sLDA, is faster,more discriminative and tractable for large-scale datasets

• is able to decompose videos into semantic components, called micro-events

• outperforms both LDA and sLDA with respect to classification accuracy
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Code & Data

Efficient C++ implementations for fsLDA, sLDAandLDAaswell as all thedata
used in this paper are available at http://ldaplusplus.com/r/research

http://ldaplusplus.com/r/research

