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Approach ]

Can topic modelling be used to infer video structure for
video event detection?

e |ssues with existing topic modelling algorithms:
o Latent Dirichlet Allocation (LDA) can result in
class irrelevant topics

o Supervised LDA (sLDA) is intractable for large-
scale datasets

o LDA and sLDA have similar performance
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We propose a new variational inference method,
Fast Supervised Latent Dirichlet Allocation ‘ ‘ |
(fsLDA), able to: g
e |dentify meaningful discriminative componentsin fsLDA fsLDA
videos, which we call micro-events ¥ ¥
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e Retain class relevant information so that the
topics are relevant to the performed actions

[ Fast Supervised LDA ]

Fast Supervised LDA (fsLDA) reduces the computational compexity of sLDA and increases
the influence of class relevant information on the infered topics to iImprove classifcation per-

formance.
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Figure 1. (Left) The graphical model representation of fsLDA. (Right) The graphical model representation of the variational distribution
used to approximate the posterior of fsLDA

Given a document and the corresponding class label 4,4, the posterior distribution of the latent
variables p(0, z | w,y, «, 8,n) is intractable. Therefore, we use variational methods to approxi-
mate this posterior.
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Kullback-Leibler (KL) divergence: KL(q || p) = —(Eq[logp(0, z,w,y, a, B,1)] — Eqllog q(8, 2)])+
logp(w,y,a, B,n) = =L(7, ¢ | o, B,n) +logp(w,y, a, B,1)
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Problemztic term
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Evidence Lower Bound (ELBO):

Problematic term: E, |logp(y | z,1)| = 7, IE z] — Eq

1. We use Jensen's inequality for the problematic term
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2. We approximate using Second-order Taylor expansion
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3. The variance term V[z] = ﬁ (anl D mtn Dl + 27]1\[21 diag(qbn)) is very small in the case
of Mutlimedia due to N, the word counts, which exceeds 10,000 and thus it can be omitted
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5. s changes very slowly w.rt ¢,, thus we derive a closed form update rule for ¢,

Closed form update rules
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[ Experimental Results

We conducted qualitative and quantitative experiments in UCF-11 and UCF-101 datasets using
state-of-the-art local features such as Improved Dense Trajectories (IDT) and Deep Convolu-
tional Neural Networks (DCNNS).

Qualitative analysis of a topic
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Figure 3: Comparison of fsLDA, sLDA, LDA and BOW using few
dimensions to represent videos (UCF-11 idt-hog)

Dataset Feature fsLDA sLDA LDA
UCF-11 idt-hog 0.9299 0.0018 0.0118
UCF-11 idt-hof 0.8530 0.8592 0.8374
UCF-11 Idt-mbhx 0.8449 0.8323 0.8336
UCF-11 idt-mbhy 0.8580 0.8455 0.8480
UCF-11 Idt-traj 0.7904 0.7748 0.7754
UCF-11 dsift 0.9280 0.0143 0.9280

UCF-101 VGG 2014 convs_2 0.6237 Intractable 0.5603

UCF-101 idt-hof 0.5607 Intractable 0.5272

Table 1. Comparison of fsLDA, sLLDA and LDA with respect to classification accuracy

We observe that fsLDA is comparably fast with LDA while being 30-200 times faster than sLDA.
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Figure 4. Speed comparison between fsLLDA, sLDA and LDA on artificial data

Conclusions

We developed a new variational inference method, fsL. DA, which

e is able to infer topics in a supervised manner

e in contrast to sLDA, is faster, more discriminative and tractable for large-scale datasets
e IS able to decompose videos into semantic components, called micro-events

e outperforms both LDA and sLDA with respect to classification accuracy

{ Code & Data

Efficient C++ implementations for fsLDA, sLDA and LDA as well as all the data
used in this paper are available at http://1daplusplus.com/r/research
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