Angelos Katharopoulos & François Fleuret

ICML, June 11, 2019

Funded by **FNSNF**

How do DNNs process large images?

Cropping and downsampling to a manageable resolution (e.g. $224\times224)$

Dividing the image into patches and processing them separately

*image taken from the Imagenet dataset

Our contributions

- Disentangle the computational and memory requirements from the input resolution.
- Sample from a soft attention to only process a fraction of the image in high resolution.
- We derive gradients through the sampling for all parameters and train our models end-to-end.

Soft Attention

Given an input x we define a neural network $\Psi(x)$ that uses attention

$$\Psi(x) = g\left(\sum_{i=1}^{K} a(x)_i f(x)_i\right) = g\left(\mathbb{E}_{I \sim a(x)}[f(x)_I]\right),$$

where $f(x) \in \mathbb{R}^{K \times D}$ are the features and $a(x) \in \mathbb{R}_+^K$ is the attention distribution.

Attention Sampling

We approximate $\Psi(x)$ by Monte Carlo

$$\Psi(x) \approx g\left(rac{1}{N}\sum_{q\in Q}f(x)_q
ight)$$
 where $Q = \{q_i \sim a(x) \mid i \in \{1, 2, \dots, N\}\}.$

We show that

- Sampling from the attention is optimal to approximate Ψ(x) if ||f(x)_i|| = ||f(x)_j|| ∀ i, j
- We can compute the gradients both for the parameters $a(\cdot)$ and $f(\cdot)$

Qualitative evaluation of the attention distribution $^{(1)}$

Full Image

Epithelial Cells

Attention Sampling

Qualitative evaluation of the attention distribution (2)

Extracted patch

Thank you for your time!

Speed limit sign detection

Come talk to us at **poster #3 at Pacific Ballroom**.