Funded by **FNSNF**

Processing Large Images with DNNs

Common pitfalls:

- Downsampling results in loss of useful information
- Processing only parts of the image requires per-part annotations
- Attention has been shown to overcome the need for per-part annotations, however **processing the whole image** is still required (Ilse et al. 2018)

High-res patch

The speed limit is unrecognizable in low resolution

We propose a **fully differentiable** end-to-end trainable model that processes only a fraction of the input by sampling from an attention distri**bution** computed in low resolution.

Attention Sampling

Given a sample x, the output of the neural network $\Psi(x;\Theta)$ that uses features $f(x;\Theta) \in \mathbb{R}^{K \times D}$ and attention $a(x;\Theta) \in \mathbb{R}_+^K$ is

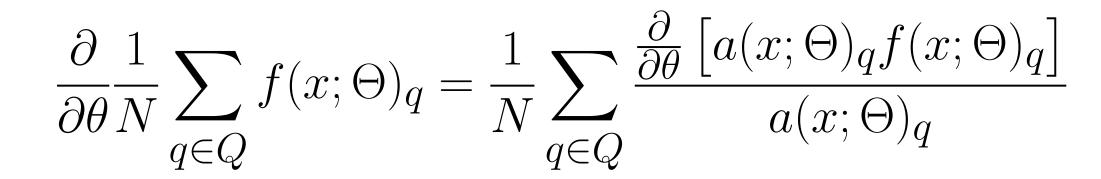
$$\Psi(x;\Theta) = g\left(\sum_{i=1}^{K} a(x;\Theta)_i f(x;\Theta)_i\right) = g\left(\mathbb{E}_{I \sim a(x;\Theta)}[f(x;\Theta)_i]\right)$$

We avoid computing $f(x)_i \forall i$ by sampling a set of feature indices from the attention distribution, $Q = \{q_i \sim a(x) \mid i \in \{1, 2, \dots, N\}\}$ and approximate the output as

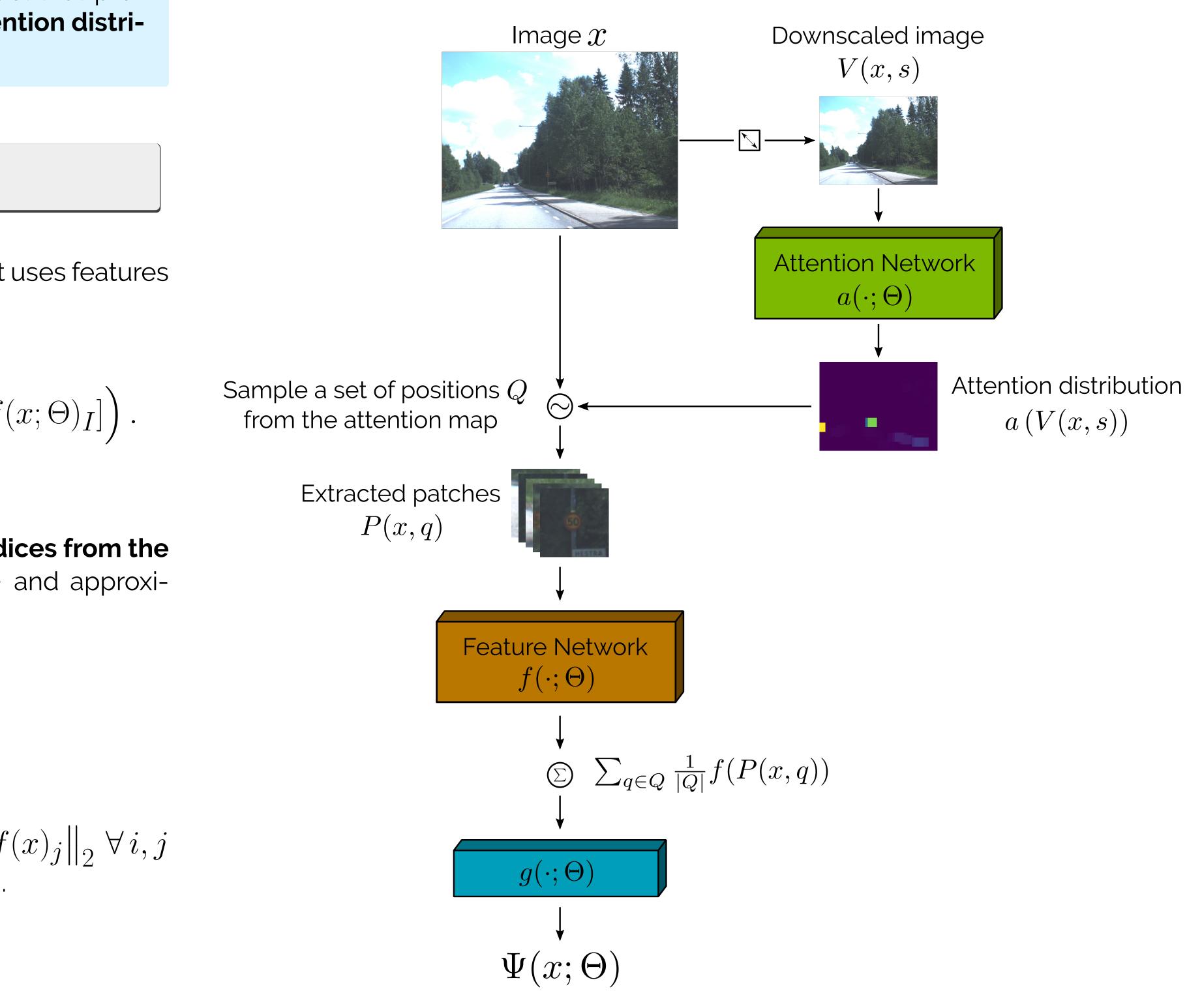
$$\Psi(x;\Theta) \approx g\left(\frac{1}{N}\sum_{q\in Q}f(x;\Theta)_q\right)$$

We show that for a fixed feature norm, namely $\|f(x)_i\|_2 = \|f(x)_j\|_2 \ \forall i, j$ our estimator is the **minimum variance approximation** of $\Psi(x)$.

Processing Megapixel Images with Deep Attention-Sampling Models


Angelos Katharopoulos^{1,2} François Fleuret^{1,2} ¹Idiap Research Institute ²École Polytechnique Fédérale de Lausanne

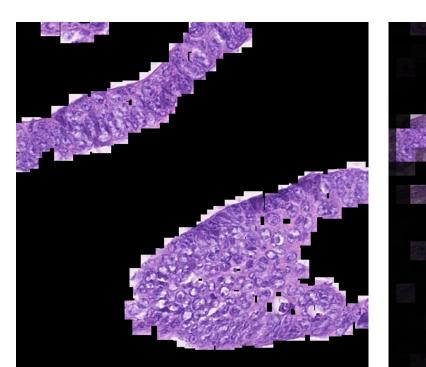
Deriving Gradients


To train the network we need to compute gradients with respect to the parameters of the attention and the feature functions.

For every parameter $\theta \in \Theta$, even the ones affecting $a(\cdot)$, we show that the gradient is:

Attention Sampling for Images

Computing the attention in low resolution and features only for some parts of the image based on the attention distribution results in **an order of magnitude** lower memory use and faster computation.


Baselines

- putes the attention from the per patch features

Datasets

- for detecting and classifying the speed limit in the image

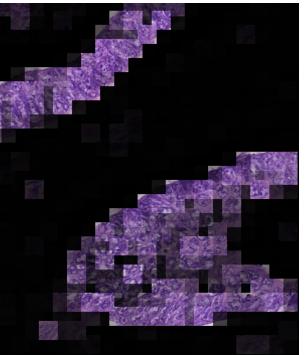
Qualitative evaluation of attention sampling

Ground Truth

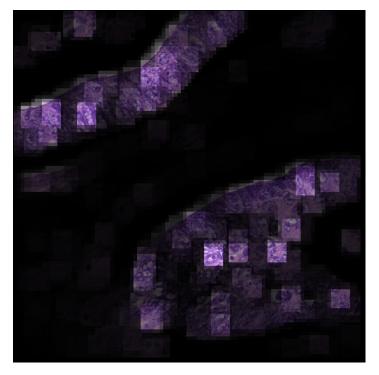
Ground Truth

Quantitative evaluation of attention sampling

Method	Scale	Test Error	Time/sample	Memory/sample
CNN	0.5	0.104 ± 0.009	4.8 ms	65 MB
CNN	1	0.092 ± 0.012	18.7 ms	250 MB
llse et al. 2018	1	0.093 ± 0.004	48.5 ms	644 MB
ATS (ours)	0.2/1	$\textbf{0.093} \pm \textbf{0.014}$	1.8 ms	21 MB
Method	Scale	Test Error	Time/sample	Memory/sample
Method CNN	Scale 0.3	Test Error 0.311 ± 0.049	Time/sample 6.6 ms	Memory/sample 86 MB
			•	,
CNN	0.3	0.311 ± 0.049	6.6 ms	86 MB
CNN CNN	0.3 0.5 1	0.311 ± 0.049 0.295 ± 0.039	6.6 ms 15.6 ms	86 MB 239 MB



Experiments


• Attention-based Deep Multiple Instance Learning (Ilse et al. 2018) that com-

• Shallow ResNets at various input scales, denoted below as CNN

• Histopathology dataset for detecting images that contain epithelial cells • Speed limit sign detection, adapted from the Swedish traffic signs dataset,

Ilse et al. 2018 (no sampling)

Attention Sampling

Ilse et al. 2018 (no sampling)

Attention Sampling